Journal of Medicinal Chemistry

Communications to the Editor

\boldsymbol{N}^{6}-Cycloalkyladenosines. Potent, A_{1}-Selective Adenosine Agonists

Sir:
Adenosine and adenosine agonists have numerous physiological effects in the nervous system, including inhibition of neurotransmitter release, anticonvulsant activity, analgesia, respiratory depression, hypothermia, and profound decreases in locomotor activity. ${ }^{12}$ The receptors that mediate these responses have been studied indirectly through the responses that they elicit ${ }^{8}, 14$ and directly by receptor binding methods. ${ }^{1,15}$ There are two main classes of extracellular adenosine receptors: A_{1} receptors whose activation leads to inhibition of adenylate cyclase and A_{2} receptors whose activation leads to stimulation of adenylate cyclase. ${ }^{14}$ These receptors are designated R_{i} and R_{a}, respectively, in an alternative nomenclature. ${ }^{8}$ Although N^{6}-substituted adenosines, especially N^{6}-cyclohexyladenosine (CHA), are known to be selective A_{1} agonists ${ }^{1,13,15}$ and to possess activity as inhibitors of platelet aggregation ${ }^{7}$ and neurotransmission, ${ }^{9}$ structure-activity relationships for lower and higher homologues of CHA have not been explored to date. The present study reports the discovery of N^{B}-cyclopentyladenosine (CPA) as a potent, A_{1}-selective adenosine agonist, a finding that has allowed the development of an A_{2} receptor binding assay. Additionally, this study reports the binding affinities for a series of N^{6}-cycloalkyladenosines at both A_{1} and A_{2} adenosine receptors.

Chemistry. All adenosine analogues were synthesized at Warner-Lambert/Parke-Davis according to standard chemical procedures ${ }^{5,7,10}$ except 2-chloroadenosine, which was obtained from the Sigma Chemical Co. Physical properties (${ }^{1} \mathrm{H}$ nuclear magnetic resonance, infrared, and
(1) Bruns, R. F.; Daly, J. W.; Snyder, S. H. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5547-5551.
(2) Bruns, R. F.; Lu, G. H.; Pugsley, T. A., manuscript in preparation.
(3) Bruns, R. F.; Lu, G. H.; Pugsley, T. A. Soc. Neurosci. Abstr. 1984, 10, 957.
(4) Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099-3108.
(5) Cook, A. F.; Bartlett, R. T.; Gregson, R. P.; Quinn, R. J. J. Org. Chem. 1980, 45, 4020-4025.
(6) Haky, J. E.; Young, A. M. J. Liq. Chromatogr. 1984, 7, 675-689.
(7) Kikugawa, K.; Iizuka, K.; Ichino, M. J. Med. Chem. 1973, 16, 358-364.
(8) Londos, C.; Cooper, D. M. F.; Wolff, J. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 2551-2554.
(9) Okada, Y.; Kuroda, Y. Eur. J. Pharmacol. 1980, 61, 137-146.
(10) Prasad, R. N.; Bariana, D. S.; Fung, A.; Savic, M.; Tietje, K.; Stein, H. H.; Brondyk, H.; Egan, R. S. J. Med. Chem. 1980, 23, 313-319.

NECA

mass (low- and/or high-resolution) spectra, elemental analyses, melting points) were consistent with the chemical structures. Lipophilicity ($\log k$) was determined by using a high-performance liquid chromatography (HPLC) correlation method. ${ }^{6}$ Statistical analyses were performed by using the Statistical Analysis System (SAS). ${ }^{11}$
Receptor Binding. $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ binding to A_{1} receptors was performed essentially as previously described ${ }^{1}$ except that whole rat brain (minus brainstem and cerebellum) was used instead of guinea pig brain.
A_{2} receptor binding was performed in exactly the same way as A_{1} receptor binding with the following exceptions: $4 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-1$-(6-amino-9H-purin-9-yl)-1-deoxy- N -ethyl- β -D-ribofuronamide $\left.\left({ }^{3} \mathrm{H}\right] \mathrm{NECA}\right)$ was used as radioligand, the tissue was 5 mg of tissue wet weight of rat striatal membranes, the incubation volume was $1 \mathrm{~mL}, 10 \mathrm{mM}$ MgCl_{2} was added to the buffer, and all incubations contained 50 nM CPA to eliminate A_{1} receptor binding. Nonspecific binding was defined as binding in the presence of $100 \mu \mathrm{M}$ CPA. This method is a variation of the $\left[{ }^{3} \mathrm{H}\right]-$ NECA binding assay of Yeung and Green; ${ }^{15}$ a detailed characterization of the method will be reported elsewhere. ${ }^{2,3}$
IC_{50} values in A_{1} and A_{2} binding were calculated from eight-point curves, including total binding, nonspecific

[^0]Table I. Affinities of N^{6}-Cycloalkyladenosines and Reference Agents in A_{1} and A_{2} Adenosine Receptor Binding Assays

	$\mathrm{A}_{1} K_{\mathrm{i}}{ }^{a} \mathrm{nM}$, $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$	$\mathrm{A}_{2} K_{\mathrm{i}}{ }^{a} \mathrm{nM}$, $\left[{ }^{3} \mathrm{H}\right] \mathrm{NECA}$	A_{1} selec ratio ${ }^{b}$	\log k^{\prime}	$\mathrm{mp},{ }^{\circ} \mathrm{C}$

${ }^{a}$ Values are means \pm standard errors for three or four separate experiments for each compound. ${ }^{b} A_{1}$ selectivity ratio is the $A_{2} K_{\mathrm{i}}$ divided by the $\mathrm{A}_{1} K_{\mathrm{i}}$. ${ }^{c}$ Adenosine is abbreviated ado. ${ }^{d} 1$-(6-Amino- $9 H$-purin- 9 -yl)-1-deoxy- N-ethyl- β-D-ribofuronamide. ${ }^{e} N^{6}-[(R$ or $S)-1-\mathrm{Methyl}$ -2-phenylethyl]adenosine. ${ }^{f}$ Melting points are listed for new compounds only and are uncorrected. ${ }^{8}$ See ref $7 .{ }^{h} \mathrm{C}, \mathrm{H}, \mathrm{N}: \pm 0.4 \% .{ }^{i} \mathrm{C}, \mathrm{H}$: $\pm 0.4 \% ; \mathrm{N}:+0.6 \%$. Exact mass: $\pm 5 \mathrm{ppm}$.
binding, and six drug concentrations that bracketed the IC_{50}.
K_{i} values for compounds in A_{1} receptor binding were calculated from the Cheng-Prusoff equation ${ }^{4}$ using 1.31 nM as the K_{d} for $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$. The K_{d} for $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ was calculated from the IC_{50} for unlabeled CHA of 2.31 nM . K_{i} values in A_{2} receptor binding were calculated on the basis of K_{d} values of 10.6 nM for $\left[{ }^{3} \mathrm{H}\right]$ NECA and 462 nM for CPA, which in turn were calculated from IC_{50} values of 15.8 nM for NECA and 685 nM for CPA.
SAR. Affinity of the N^{6}-cycloalkyladenosines in A_{1} receptor binding varies as a smooth function of ring size, reaching a maximum with N^{6}-cyclopentyladenosine (Table I). CPA is approximately twice as potent as CHA at the A_{1} receptor, and with 0.59 nM affinity, CPA is the most potent adenosine agonist reported to date. For ring sizes $n=3-8$, the adenosine analogues are all quite potent; only the two largest analogues ($n=10,12$) are substantially less potent than CHA. Preliminary attempts to correlate receptor binding in this series with physicochemical properties suggest a correlation with lipophilicity ($\log k$), as indicated by the following equations, where n is the number of compounds included in the analysis, s is the root mean square error, r^{2} is the square of the correlation coefficient, F relates the variance of the null hypothesis to the correlation variance, p is the probability that a random set of data would yield a higher F value, and terms are given \pm their standard errors.

$$
\left.\begin{array}{rl}
\log \left(\mathrm{A}_{1} K_{\mathrm{i}}\right)= & {[-1.33(\pm 0.23)] \log k^{\prime}+} \\
& {[0.43(\pm 0.04)](\log k)^{2}+[0.99(\pm 0.25)]} \\
n=8, s= & 0.18, r^{2}=0.99, F=185.21, p<0.0001
\end{array}\right] \begin{array}{r}
\log \left(\mathrm{A}_{2} K_{\mathrm{i}}\right)= \\
{[-0.50(\pm 0.31)] \log k^{\prime}+} \\
{[0.19(\pm 0.06)](\log k)^{2}+[3.05(\pm 0.34)]} \\
n=8, s=0.25, r^{2}=0.92, F=28.87, p<0.0018
\end{array}
$$

Whether the correlations reflect whole molecule lipophilicity, side chain lipophilicity, size effects, or a combination of factors is currently under investigation. Finally, it is interesting to note that A_{1} and A_{2} binding affinities are correlated in this series, as defined by the following equation:

$$
\begin{gathered}
\log \left(\mathrm{A}_{1} K_{\mathrm{i}}\right)=[1.74(\pm 0.21)] \log \left(\mathrm{A}_{2} K_{\mathrm{i}}\right)-[4.72(\pm 0.70)] \\
n=8, s=0.42, r^{2}=0.92, F=66.23, p<0.0002
\end{gathered}
$$

Because of its high affinity for A_{1} receptors, CPA proved useful in developing the A_{2} receptor binding assay used in the present study. A major problem in the use of $\left[{ }^{3} \mathrm{H}\right]$ NECA as an A_{2} receptor ligand is its high affinity for A_{1} receptors, so that even in favorable tissues such as rat striatum A_{2} receptors account for only about half of specific binding. ${ }^{15}$ Reference agents including CHA give shallow dose-inhibition curves with incomplete separation between A_{1} and A_{2} phases of receptor occupancy. In contrast, CPA shows a biphasic dose-inhibition curve with a clear plateau between the A_{1} and A_{2} phases. ${ }^{2}$ For this reason, 50 nM CPA is used routinely in our A_{2} receptor binding assay to eliminate the A_{1} component of $\left[{ }^{3} \mathrm{H}\right]$ NECA binding. The relative affinities of NECA and R-PIA in A_{1} and A_{2} binding (Table I) are in good agreement with their affinities in A_{1}-inhibited and A_{2}-stimulated adenylate cyclase, ${ }^{8}$ respectively.
CPA is the most A_{1} selective of the N^{6}-cycloalkyladenosines (780 -fold, Table I), but the cycloheptyl and cylcooctyl homologues are almost equally selective. All of the N^{6}-cycloalkyladenosines except the cyclodecyl and cyclododecyl homologues are more A_{1} selective than the most selective reference agent, N^{6} - $[(R)$-1-methyl-2phenylethyl]adenosine (R-PIA).
Studies exploring the biological properties of this homologous series and the use of these potent adenosine agonists as pharmacological tools are in progress.
Acknowledgment. We thank J. A. Bristol and T. A. Pugsley for helpful discussions, J. Fergus, K. Lawson, and G. Lu for K_{i} determinations, and J. E. Haky and A. M. Young for $\log k^{\prime}$ determinations.

Registry No. CHA, 36396-99-3; CPA, 41552-82-3; N_{6}-cyclopropylado, 97374 -48-6; N_{6}-cyclobutylado, 97374-49-7; N_{6}-cycloheptylado, 41552-83-4; N_{6}-cycloocytylado, 41552-84-5; N_{6}-cyclodecylado, 97374-50-0; N_{6}-cyclododecylado, 97374-51-1.
(16) Department of Chemistry.
(17) Department of Pharmacology.

Walter H. Moos, ${ }^{* 16} \begin{array}{r}\text { Deedee S. Szotek }{ }^{16} \\ \text { Robert F. Bruns }{ }^{17}\end{array}$
Departments of Chemistry and Pharmacology
Warner-Lambert/Parke-Davis Pharmaceutical Research
Ann Arbor, Michigan 48105
Received February 28, 1985

[^0]: (11) SAS Institute, Inc., Cary, NC.
 (12) Snyder, S. H. Ann. Rev. Neurosci. 1985, 8, 103-124.
 (13) Trost, T.; Stock, K. Naunyn-Schmiedeberg's Arch. Pharmacol. 1977, 299, 33-40.
 (14) van Calker, D.; Müller, M.; Hamprecht, B. J. Neurochem. 1979, 33, 999-1005.
 (15) Yeung, S.-M. H.; Green, R. D. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984, 325, 218-225.

